An Algorithmic Solution to the Couple-Casino Game

Another 2-player game from Combinatorial Game Theory

Subhobrata Dey
Computer Science & Engineering
Jadavpur University
Kolkata,India

sbcd90 @ gmail.com

Abstract—Casino Games are very important topics of research in the
field of probability theory & combinatorial game theory[2]. Here I
discuss about another highly interesting 2-player casino game known
as “Couple-Casino Game” & present an algorithm for maximizing
the amount of profit that can be achieved on playing this game. The
solution can also be used for several other practical algorithm
problems like graph theory problems involving the generation of a
maximum cost spanning tree for a specified number of vertices etc..
The algorithm has also been tested with a wide variety of test cases
upon implementing it in C++ programming language.

Keywords-2-player game; Linear Programming ; Dynamic
Programming; Backtracking.

I. INTRODUCTION

The topic of this paper is to provide a polynomial-time solution to the
Couple-Casino game. Here is a brief description of the rules & regul-
ations of the game:
<i> The game is a 2-player game played by a couple in a casino & a-
ssuming that a judge is present to decide how much profit they make.
<ii> A multiset of integers will be provided to the couple by the judg-
e using the pseudo random number generators. Now, the two persons
making the couple are to split the multiset into two parts, the sizes of
which are specified by the judge.
<iii> They may do so in many ways, but the goal of the game is to m-
inimize the difference of the sums of integers present in the two parti-
tioned multisets, i.e. if the sums of integers present in the two sets be
sl & s2 respectively, then the goal of the game is to minimize

sl —s21.
The more a couple can minimize the more money they can earn. So,
naturally the algorithm described here will minimize the term & thus
in turn maximizing the profit. It may seem that the problem belongs
to the NP-class & will have a non-polynomial time solution using ba-
cktracking. In such a case we need to generate all possible ways of
splitting the given multiset, then check all other constraints & finally
optimize our goal. Thus, the above algorithm requires exponential
time complexity.
However,I here propose an algorithm which solves the given problem
in polynomial time complexity. For this I use the technique of dyna-
mic programming which increases the space complexity of the algori-
thm but in turn reduces time complexity.
Here,I utilize the Linear Programming approach to model the proble-
m as a LPP, & then use dynamic programming technique to find the
optimum goal & then use the backtracking[1] approach to find a feas-
ible solution to the problem. Among the common algorithms used,

is the 0/1 Knapsack problem [3] whichis a classic example of a
subset selection dynamic programming problem.

II. AssumpTiON

Without loss of generality,i have made an assumption that the judge
always provides the size of the largest partitioned multiset,so,the sol-
ution now works.

In the next couple of sections, I present complete description of my
algorithm regarding the solution of Couple-Casino game.

III. 0/1 Knapsack ProsLEM IN Brier

The problem is considered to be one of the basic problems related to
subset dynamic programming problems[1] & [4]. The major idea is to
select a subset from a multiset maximizing/minimizing a given criter-
ia for profit. This algorithm is the backbone of my approach to solve
the Couple-Casino game. The algorithm pseudocode(4] presented bel-
ow gives a vivid description of the solution:

dpknapsack(inputmultiset[],sumofelements,results[][])
//initialize results[1] to 0
for i=2 to inputmultiset.size()
for j=1 to sumofelements
if(results[i-1][j]==1)
results[i][j]=1
else if(results[i-1][j-inputmultiset[i]]==1)
results[i][j]=1
for j=1 to sumofelements
if(results[inputmultiset.size()][j]==1)
maxi=j
return(maxi)

Pseudocode of knapsack problem

The function defined above takes three parameters,the array
inputmultiset[]Jwhich consists of the respective profits for each index.
sumofelements is simply a given sum as input. The other 2-dimensi-
onal array results[][] store a boolean value indicating whether a given
sum is possible to achieve from the given inputmultiset[]. Finally,in
the last step, we maximize the sum & return itin the variable maxi.
The algorithm for the problem seems to be pretty simple. Also one
can easily say, that we have optimized our profit by generating all
possible subsets of the given inputmultiset. Now,one thing to realize
is that we could have solved this problem just by using backt-

mailto:sbcd90@gmail.com

racking to generate all possible 2*inputmultiset.size() subsets & then
optimizing our constraint. In that case,the time complexity would
have been exponential. So,definitely without compromising with the
optimization we can improve our time complexity by increasing the
space required. This is what Knapsack allows us to do. So, using this
technique the time complexity turns out to be
O(inputmultiset.size()*sumofelements)
which is polynomial time complexity.The space complexity increases
to the same as time complexity.
In the next section, I show how to model the Couple-Casino game in
the form of 0/1 Knapack problem.

IV. Degscrietion Or TrE Dynamic ProcraMMING SoLuTiON

The Couple-Casino game problem can be modeled at first as a Linear
Programming problem[1] where we need to optimize one constraint
with respect to a couple of more constraints.Here, is the mathematical
formulation of this problem:
maximize
a;multiset,;+a,multiset,+.....+a,multiset,
subject to, a;+ar+.......+a, <= maxi, where maxi is given as input.
& aj,a,,.....,a, are elements of set {0,1}.
& aymultiset;+a,multiset,+......+a,multiset, <=(sum/2),
where sum is the sum-total of all the elements of the multiset.
From the above formulation, we get the following algorithm:

dpccgame(multisetsize, multiset[],maxi,sum,solution[][][])
//initialize all elements of solution[1] to 0
solution[1][0][0]=1
solution[1][multiset[1]][1]=1
for i=2 to multisetsize
for j=0 to sum
for u=0 to maxi
solution[i][j][u]=0
if(solution[i-1][j][u]==1)
solution[i][j][u]=1
if(solution[i-1][j-multiset[i]][u-1]==1)
solution[i][j][u]=1
//finding a feasible optimized solution
solmax=-1
for i=0 to sum
if((solution[multisetsize][i][maxi]==1)I|
(solution[multisetsize][i][multisetsize-maxi+1]==1))
if(solmax<i)
if(solution[multisetsize][i][maxi]==1)
soll max=maxi
else
sollmax=multisetsize-maxi+1
solmax=i
print solmax
backtracking(solmax,sol I max,multisetsize,multiset,
solution)

return

Pseudocode of dynamic programming approach

The initial call to the function will be of the form:
dpccgame(multisetsize, multiset,maxi,sum/2,solution)

The function takes as input multisetsize----the size of the multiset,
multiset[]----the multiset itself, maxi----the maximum number of ele-

ments that one person of the two can choose from the multiset,sum---
half the sum-total of all the elements of the multiset & solution[][][]
---generates all possible solutions from which the optimized one must
be chosen. solution[][][] is a 3-dimensional array, where 1* dimension
denotes the indices of multiset[], 2™ dimension denotes the sum to be
maximized,3" dimension denotes the positive integral values <=maxi.
Initially, solution[1][][] are all initialized to O . Logically,if we see ,
there are two possible options for each element of multiset[]. When
the first element from the multiset[] is chosen then,

solution[1][multiset[1]][1]=1.
Again,if the first element is not chosen then,

solution[1][0][0]=1.

Now,the next few steps of the algorithm clearly works like the 0/1
Knapsack problem. The first two of the three nested loops is similar
to the two nested loops of the 0/1 Knapsack problem. The first loop
provides the indices to elements of multiset[] while the second loop
maximizes our result. The third loop is an additional loop which sati-
sfies the first given constraint of the LPP.
After filling the entire solution[][][], we look to find the optimized
way which maximizes the couples' profit. Variable solmax gives us
the required solution. sollmax gives the size of the found partitioned
set. Now, this is not enough. From here the couple will only get the
maximum profit that they can get. But, they have to make the moves
so that,this profit can be achieved. Thus we need to generate at least
one feasible solution for the couple. For, this reason the backtrack-
ing procedure is used.
I discuss this procedure in the following section.

V. DescrrptioN Or THE BackTrACKING PROCEDURE

The backtracking procedure provided here gives a feasible solution to
the problem. There may be many other possible solution. All these
solutions can be generated by using an additional loop along with the
given procedure. However, for this problem only a single solution is
adequate.

Here is the algorithm for it:

backtracking(solmax,sol I max,multisetsize,multiset[],
solution[][][])
if(solution[multisetsize-1][solmax][sol Imax]==1)
backtracking(solmax,sol 1 max,multisetsize-1,
multiset,solution)
else
if(solution[multisetsize-1][solmax-multiset[multisetsize]]
[sollmax-1]==1)
backtracking(solmax-multiset[mutisetsize],
sollmax-1,multisetsize-1,multiset,solution)
print multiset[multisetsize]

Pseudocode of backtracking procedure

The initial call to the function is already provided in the dpccgame
function.

The required parameters of the procedure are: solmax---the optimized
result, sollmax---the optimized sub-result, & multiset[], solution[][]
[1,multisetsize all of which are defined earlier. Now , before we disc-
uss the backtracking procedure, lets first recheck what solution[][][]
contains.

solution[i][j][u] gives using upto i" element of multiset & taking at-
most u elements of them,the maximum sum satisfying the constraints
is j. Thus, we see that we must start from the

solution[multisetsize][solmax][sol 1max]
& then move upward until no moves become feasible. Thus, we will
get one of the two disjoint sets to be generated. Now, since the union
of these two sets must be the entire multiset, so,we can very easily
generate the other set as well. This give us the moves that the couple
is going to use to get the maximum profit.Now,here is the description
of the backtracking procedure in detail.
The procedure is almost just the reverse of the previous dynamic pro-
gramming procedure. For each element of multiset[], we have two
possible options—Either to take it or to leave it. When we are leaving
that element,we are not including that element in our current set.
Thus, there is no need to print that element. Again,if we take it,then
automatically (as well as logically) the parameters for the backtrack-
ing procedure changes & that element is printed. Since, this is a pseu-
docode so the terminating condition for the procedure is not specified
explicitly. Whenever , one of the indices of solution[][][] becomes
less than 0, the procedure must terminate.
Before,i finish discussing the algorithm,here is a list of a few less im-
portant points.

VI. Few Lgss Imporrant Points

i> The ordering of the moves doesn't matter in the problem.Any order
of moves which gives maximum profit for the couple is valid. Only
each of the persons can take elements from a single set.

ii>The backtracking procedure can be developed such that the 2- pla-
yer game can be finished in the minimal number of recursions. This
will further optimize the time complexity of solution.The next section
discusses issues with time & space complexity.

VII. Tme CompLEXITY ANALYSIS

The algorithm presented above is a polynomial time algorithm & its
simple to show that from the above pseudocodes.
Analysis of the dpccgame function shows that, there are three nested
loops in the function at first. This gives the time complexity of the
function as,

O(multisetsize*sum*maxi) , where all the variables

have been described earlier.
The backtracking procedure has a linear time complexity of
O(multisetsize)

Now, we find that if the elements of the multiset[] are too large,then
sum will also be large which increases the time complexity. So, it is
necessary to assign low values of elements of multiset[] in order to
utilize the polynomial time complexity of the algorithm.

VIII. Srace CompLEXITY ANALYSIS

As discussed previously, we compromise with the space complexity
in order to optimize the time complexity of the algorithm. Thus,space
complexity which would have been linear, had the time complexity
been exponential,now turns cubic in nature.

The space complexity of this algorithm would now become,like this:

O(multisetsize *sum*maxi),where all variables have
been described earlier.
The problem that we saw with elements of multiset[] in time comple-
xity becomes more profound here.This is one of the major difficulties
of this algorithm. The solution however is same as that discussed in
the time complexity analysis section.

IX. Concrusion

In the previous sections, I have discussed an algorithmic solution to
yet another combinatorial 2-player game called Couple-Casino game.
As Icomplete preparing this paper, I realize a few defects of this
algorithm which I have pointed out in section VI & VIL VIII respect-
ively. I have also not proved the lower bound time & space complex-
ity for this problem. So, there may be also scope for improvement
regarding this optimization problem.

X. ACKNOWLEDGMENT

I have not taken any idea regarding this problem & its solution from
anyone personally. However , I have used a lot of web resources to
learn the concepts of combinatorial games & their solutions. I have
also studied a lot of algorithms for solving out this problem. Thus, I
have no one to thank personally. However, its probably my love &
interest in solving mathematical puzzles & combinatorial games like
chess,sudoku etc. allowed me to think of writing a paper on combina-
torial games.

XI. REFERENCES

[1] T.H.Cormen, C.E.Leiserson, R.L.Rivest, C.Stein, Introduction To Algorithms, 3"
ed.,Phi Learning pvt. Ltd., pp-359-413 & pp-843-860.

[2] Lim Chu Wee, Introductory Combinatorial Game Theory, Web Tutorials, National
University of Singapore.

[3] Lecture notes from Eastern Washington University on 0/1 Knapsack problem.

[4] Wikipedia notes on variation of Knapsack Problems.

	I. Introduction
	II. ASSUMPTION
	III. 0/1 KNAPSACK PROBLEM IN BRIEF
	IV. DESCRIPTION OF THE DYNAMIC PROGRAMMING SOLUTION
	V. DESCRIPTION OF THE BACKTRACKING PROCEDURE
	VI. FEW LESS IMPORTANT POINTS
	VII. TIME COMPLEXITY ANALYSIS
	VIII. SPACE COMPLEXITY ANALYSIS
	IX. CONCLUSION
	X. ACKNOWLEDGMENT
	XI. REFERENCES

